Till innehåll på sidan

Nya publikationer

Här hittar du våra 50 senaste publikationer. För fler publikationer, se informationen kring varje forskare.

Nya publikationer

[1]
B. Rietzler och M. Ek, "Adding Value to Spruce Bark by the Isolation of Nanocellulose in a Biorefinery Concept," ACS Sustainable Chemistry & Engineering, vol. 9, no. 3, s. 1398-1405, 2021.
[5]
E. Hartell et al., "Seeking informed consent in a multilingual school environment : ATSSTEM - project," i PATT38 Book of Abstracts, 2021, s. 29-30.
[7]
J. Berglund et al., "Acetylation and Sugar Composition Influence the (In)Solubility of Plant beta-Mannans and Their Interaction with Cellulose Surfaces," ACS SUSTAINABLE CHEMISTRY & ENGINEERING, vol. 8, no. 27, s. 10027-10040, 2020.
[8]
A. Bengtsson et al., "Carbon Fibers from Lignin-Cellulose Precursors : Effect of Carbonization Conditions," ACS Sustainable Chemistry and Engineering, vol. 8, no. 17, s. 6826-6833, 2020.
[9]
T. Huang et al., "Effect of cellulose oxalate as cellulosic reinforcement in ternary composites of polypropylene/maleated polypropylene/cellulose," Composites. Part A, Applied science and manufacturing, vol. 134, 2020.
[10]
T. Huang, "Hydrophobization of cellulose for bio-based materials," Doktorsavhandling : KTH Royal Institute of Technology, TRITA-CBH-FOU, 2020:36, 2020.
[11]
D. M. de Carvalho et al., "Impact of birch xylan composition and structure on film formation and properties," Holzforschung, vol. 74, no. 2, s. 184-196, 2020.
[12]
R. Deshpande et al., "Lignin carbohydrate complex studies during kraft pulping for producing paper grade pulp from birch," TAPPI Journal, vol. 19, no. 9, s. 447-460, 2020.
[13]
T. M. Budnyak et al., "Membrane-Filtered Kraft Lignin-Silica Hybrids as Bio-Based Sorbents for Cobalt(II) Ion Recycling," ACS Omega, vol. 5, no. 19, s. 10847-10856, 2020.
[14]
I. V. Pylypchuk et al., "New Insight into the Surface Structure of Lignin Nanoparticles Revealed by H-1 Liquid-State NMR Spectroscopy," ACS SUSTAINABLE CHEMISTRY & ENGINEERING, vol. 8, no. 36, s. 13805-13812, 2020.
[15]
N. Giummarella et al., "New Structures in Eucalyptus Kraft Lignin with Complex Mechanistic Implications," ACS SUSTAINABLE CHEMISTRY & ENGINEERING, vol. 8, no. 29, s. 10983-10994, 2020.
[16]
I. Dogaris, E. Ammar och G. P. Philippidis, "Prospects of integrating algae technologies into landfill leachate treatment," World Journal of Microbiology & Biotechnology, vol. 36, no. 3, 2020.
[17]
P. A. Lindén et al., "Stabilising mannose using sodium dithionite at alkaline conditions," Holzforschung, vol. 74, no. 2, s. 131-140, 2020.
[18]
T. M. Budnyak et al., "Tailored Hydrophobic/Hydrophilic Lignin Coatings on Mesoporous Silica for Sustainable Cobalt(II) Recycling," ACS Sustainable Chemistry & Engineering, vol. 8, no. 43, s. 16262-16273, 2020.
[20]
T. Huang, "Betulin-modified cellulosic textile fibers with improved water repellency, hydrophobicity and antibacterial properties," Licentiatavhandling : KTH Royal Institute of Technology, TRITA-CBH-FOU, 2019:14, 2019.
[21]
A. Bengtsson, "Carbon fibres from lignin-cellulose precursors," Licentiatavhandling Stockholm : KTH Royal Institute of Technology, TRITA-CBH-FOU, 2019.11, 2019.
[22]
C. Chen, "Development of Non-leaching Antibacterial Approaches on Cellulose-based Substrates and Their Mechanisms," Doktorsavhandling : KTH Royal Institute of Technology, TRITA-CBH-FOU, 2019: 70, 2019.
[24]
M. Zanao et al., "Evaluation of Kraft-PS Cooking for Eucalypt and Pine Wood Chip Mixtures," Journal of wood chemistry and technology, vol. 39, no. 3, s. 149-165, 2019.
[25]
H. Lennholm, "How can a progression in teaching for sustainable development be achieved in engineering education?," i 2019 ESERA conference in Bologna, Italy, August 26-30, 2019, 2019.
[26]
T. Huang et al., "Hydrophobic and antibacterial textile fibres prepared by covalently attaching betulin to cellulose," Abstracts of Papers of the American Chemical Society, vol. 257, 2019.
[27]
T. Huang et al., "Hydrophobic and antibacterial textile fibres prepared by covalently attaching betulin to cellulose," Cellulose (London), vol. 26, no. 1, s. 665-677, 2019.
[28]
D. M. de Carvalho et al., "Impact of the chemical composition of cellulosic materials on the nanofibrillation process and nanopaper properties," Industrial crops and products (Print), vol. 127, s. 203-211, 2019.
[30]
J. Henschen, D. Li och M. Ek, "Preparation of cellulose nanomaterials via cellulose oxalates," Carbohydrate Polymers, vol. 213, s. 208-216, 2019.
[32]
I. Dogaris, M. Lindström och G. Henriksson, "Study on tall oil solubility for improved resource recovery in chemical pulping of wood," Abstracts of Papers of the American Chemical Society, vol. 257, 2019.
[33]
H. Lennholm, "Supplementary Instructions (SI) med gymnasieskolan," i Minikonferens: "Framtidens lärare i samverkan med KTH, 2019.
[34]
I. Dogaris, M. Lindström och G. Henriksson, "Tall Oil Solubility in Industrial Liquors," Stokcholm, Energiforsk, 2019:282, 2019.
[35]
N. Giummarella et al., "A Critical Review on the Analysis of Lignin Carbohydrate Bonds," Green Chemistry, 2018.
[36]
N. Giummarella, C. Gioia och M. Lawoko, "A One-Pot Biomimetic Synthesis of Selectively Functionalized Lignins from Monomers: A Green Functionalization Platform," Green Chemistry, vol. 21, no. 11, s. 5579-5585, 2018.
[37]
A. Ottenhall, "Antimicrobial materials from cellulose using environmentally friendly techniques," Doktorsavhandling : KTH Royal Institute of Technology, TRITA-CBH-FOU, 2018:57, 2018.
[38]
H. Lennholm och J.-E. Dahlin, "Board games in secondary/higher education for sustainable development," i Forskning i naturvetenskapernas didaktik, samhällsfrågor i naturvetenskaplig  undervisning 2018, 2018.
[40]
P. Norström et al., "Disciplinering inom högstadiets teknikämne," i FobasNT18, 2018.
[41]
N. Giummarella, "Fundamental Aspects of Lignin Carbohydrate Complexes (LCC) : Mechanisms, Recalcitrance and Material concepts," Doktorsavhandling Stockholm : KTH Royal Institute of Technology, TRITA-CBH-FOU, 2018:18, 2018.
[42]
C. Moser, G. Henriksson och M. Lindström, "Improved dispersibility of once-dried cellulose nanofibers in the presence of glycerol," Nordic Pulp & Paper Research Journal, 2018.
[43]
C. Moser, "Manufacturing and Characterization of Cellulose Nanofibers," Doktorsavhandling Stockholm : KTH Royal Institute of Technology, TRITA-CBH-FOU, 2019:1, 2018.
[44]
R. Deshpande et al., "The reactivity of lignin carbohydrate complex (LCC) during manufacture of dissolving sulfite pulp from softwood," Industrial crops and products (Print), vol. 115, s. 315-322, 2018.
[45]
A. Tagami, "Towards molecular weight-dependent uses of kraft lignin," Licentiatavhandling Stockholm : KTH Royal Institute of Technology, TRITA-CBH-FOU, 34, 2018.
[46]
T. Huang, D. Li och M. Ek, "Water repellency improvement of cellulosic textile fibers by betulin and a betulin-based copolymer," Cellulose (London), vol. 25, no. 3, s. 2115-2128, 2018.
[47]
J. Berglund, "Wood Hemicelluloses - Fundamental Insights on Biological and Technical Properties," Doktorsavhandling Stockholm, Sweden : KTH Royal Institute of Technology, TRITA-CBH-FOU, 2018:63, 2018.
[48]
C. Moser et al., "Xyloglucan adsorption for measuring the specific surface area on various never-dried cellulose nanofibers," Nordic Pulp & Paper Research Journal, vol. 33, no. 2, s. 186-193, 2018.
[49]
C. Moser et al., "Xyloglucan for estimating the surface area of cellulose fibers," Nordic Pulp & Paper Research Journal, vol. 33, no. 2, s. 194-199, 2018.
[50]
X. Geng et al., "Bioinspired Ultrastable Lignin Cathode via Graphene Reconfiguration for Energy Storage," ACS Sustainable Chemistry and Engineering, vol. 5, no. 4, s. 3553-3561, 2017.
Innehållsansvarig:Isabella Kwan
Tillhör: Institutionen för fiber- och polymerteknologi
Senast ändrad: 2021-05-31