Till innehåll på sidan
Till KTH:s startsida Till KTH:s startsida

Publikationer

50 senaste publikationerna

[2]
D. Katla-Milewska, S. M. Nazir och A. Skorek-Osikowska, "Synthetic natural gas (SNG) production with higher carbon recovery from biomass: Techno-economic assessment," Energy Conversion and Management, vol. 300, 2024.
[6]
F. Johnsson, L. Zetterberg och K. Möllersten, "Mot nettonollutsläpp : hur kan koldioxidavskiljningbidra?," Stockholm, SNS Analys, 98, 2023.
[7]
M. Fridahl et al., "Novel carbon dioxide removals techniques must be integrated into the European Union’s climate policies," Communications Earth & Environment, vol. 4, no. 1, 2023.
[9]
D. S. S. S. Sirigina, A. Goel och S. M. Nazir, "Process concepts and analysis for co-removing methane and carbon dioxide from the atmosphere," Scientific Reports, vol. 13, no. 1, 2023.
[10]
A. Lefvert och S. Grönkvist, "Smarter ways to capture carbon dioxide-exploring alternatives for small to medium-scale carbon capture in Kraft pulp mills," International Journal of Greenhouse Gas Control, vol. 127, 2023.
[11]
F. Johnsson, L. Zetterberg och K. Möllersten, "Towards net-zero emissions – how can carbon dioxide capture and storage contribute?," Stockholm : SNS förlag, 2023.
[14]
A. Eltigani et al., "Exploring lessons from five years of biochar-producing cookstoves in the Kagera region, Tanzania," Energy for Sustainable Development, vol. 71, s. 141-150, 2022.
[15]
[17]
K. Möllersten och M. Gustavsson, "Implementing BECCS in Swedish district heating – An SDG assessment," i Proceedings 16th Greenhouse Gas Control Technologies Conference 2022 (GHGT-16), 2022.
[18]
J. Andersson och S. Grönkvist, "Improving the economics of fossil-free steelmaking via co-production of methanol," Journal of Cleaner Production, vol. 350, s. 131469, 2022.
[22]
D. S. S. S. Sirigina, A. Goel och S. M. Nazir, "Multiple greenhouse gases mitigation (MGM) : Process concepts to co-remove non-CO2 (CH4) greenhouse gases and CO2 from air," i Multiple greenhouse gases mitigation (MGM): Process concepts to co-remove non-CO2 (CH4) greenhouse gases and CO2 from air, 2022.
[23]
D. S. S. S. Sirigina och S. M. Nazir, "Non-Fossil Methane Emissions Mitigation From Agricultural Sector and Its Impact on Sustainable Development Goals," Frontiers in Chemical Engineering, vol. 4, 2022.
[24]
J. Andersson, "Non-geological hydrogen storage for fossil-free steelmaking," Doktorsavhandling : Kungliga Tekniska högskolan, TRITA-CBH-FOU, 2022:21, 2022.
[26]
K. Zhang et al., "Quantifying the photovoltaic potential of highways in China," Applied Energy, vol. 324, s. 119600, 2022.
[28]
Y. Tan, "Thermo-physical properties of CO2 mixtures and their impacts on cryogenic carbon capture processes," Doktorsavhandling Stockholm : KTH Royal Institute of Technology, TRITA-CBH-FOU, 2022:1, 2022.
[30]
A. F. Suarez-Corredor et al., "Understanding the NH3 adsorption mechanism on a vanadium-based SCR catalyst : A data-driven modeling approach," Chemical Engineering Science, vol. 262, 2022.
[32]
Z. Qian et al., "Vectorized dataset of roadside noise barriers in China using street view imagery," Earth System Science Data, vol. 14, no. 9, s. 4057-4076, 2022.
[34]
R. Sadegh-Vaziri, H. Winberg-Wang och M. Bäbler, "1D Finite Volume Scheme for Simulating Gas-Solid Reactions in Porous Spherical Particles with Application to Biomass Pyrolysis," Industrial & Engineering Chemistry Research, vol. 60, no. 29, s. 10603-10614, 2021.
[36]
J. Andersson och S. Grönkvist, "A comparison of two hydrogen storages in a fossil-free direct reduced iron process," International journal of hydrogen energy, vol. 46, no. 56, s. 28657-28674, 2021.
[37]
J. Andersson, "Application of Liquid Hydrogen Carriers in Hydrogen Steelmaking," Energies, vol. 14, no. 5, s. 1392, 2021.
[38]
[39]
K. Gustafsson et al., "BECCS with combined heat and power : Assessing the energy penalty," International Journal of Greenhouse Gas Control, vol. 108, 2021.
[40]
A. F. Suarez-Corredor et al., "Characterization Method for Gas Flow Reactor Experiments-NH3 Adsorption on Vanadium-Based SCR Catalysts," Industrial & Engineering Chemistry Research, vol. 60, no. 30, s. 11399-11411, 2021.
[42]
S. Cloete et al., "Cost-effective clean ammonia production using membrane-assisted autothermal reforming," Chemical Engineering Journal, vol. 404, 2021.
[46]
D. S. S. S. Sirigina, A. Goel och S. M. Nazir, "Multiple Greenhouse Gases Mitigation (MGM): Process Intensification to Mitigate Non-CO2Gases and CO2from Air," i AIChE Annual Meeting, Conference Proceedings, 2021.
[47]
G. Lo Zupone et al., "Open center tidal turbine : How a new mooring system concept affects the performances," International Journal of Energy Research, vol. 45, no. 5, s. 6727-6744, 2021.
[48]
S. M. Nazir et al., "Pathways to low-cost clean hydrogen production with gas switching reforming," International journal of hydrogen energy, vol. 46, no. 38, s. 20142-20158, 2021.
[50]
Z. Wang et al., "Potential assessment of large-scale hydro-photovoltaic-wind hybrid systems on a global scale," Renewable & sustainable energy reviews, vol. 146, s. 111154, 2021.