System-level impact of electrification on the road freight transport system: a System Dynamics approach
Time: Thu 2025-12-11 14.00
Location: F3 (Flodis), Lindstedtsvägen 26 & 28, Stockholm
Video link: https://kth-se.zoom.us/j/65911695046
Language: English
Subject area: Machine Design
Doctoral student: Zeinab Raoofi , Integrated Transport Research Lab, ITRL
Opponent: Dr. Paul Pfaffenbichler, Institute of Transport Studies, BOKU University
Supervisor: Docent Anna Pernestål Brenden, Integrated Transport Research Lab, ITRL; Professor Maria Huge Brodin, Linköping University, Department of Management and Engineering; Professor Mohammad Reza Hesamzadeh, Elkraftteknik
Abstract
Road freight transport is a major contributor to global emissions. Decarbonising the sector is challenging but essential to achieving sustainability goals. While electrification of heavy-duty trucks offers a promising decarbonisation pathway, this transition is more than just a technological shift; it is a "system transition" shaped by multiple interconnections among technological innovation, infrastructure expansion, market adoption, stakeholder engagement, and policy interventions. Understanding this system transition requires moving beyond isolated technical or financial analyses toward a holistic perspective that captures how decisions by stakeholders such as freight operators, charging providers, vehicle manufacturers, electricity suppliers, and policymakers interact through feedback mechanisms that unfold over time.
This thesis investigates the dynamic complexity shaping the transition to electrified road freight transport using System Dynamics (SD) methodology. Through six appended papers, the research addresses three fundamental questions: How does electrification impact the freight system at the system level? How can this dynamic complexity be modelled? How can such modelling support informed decision-making toward sustainable transport?
The research begins by structuring future pathways for automation, electrification, and digitalisation using morphological analysis, mapping 23 technology parameters across four scenarios. A conceptual multi‑layer model then distinguishes direct electrification effects (e.g., vehicle cost, charging need) from induced effects that ripple through supply chains, transport markets and infrastructure, illustrated with causal loop diagrams (CLDs). Three quantitative SD models capture critical transition dynamics: the co-evolution of electric truck adoption and charging infrastructure development, revealing "chicken-and-egg" dynamics and policy leverage points; the complex trade-offs between business efficiency and societal efficiency, exposing potential rebound effects; and the cross-sectoral interdependencies between freight electrification and electricity supply, revealing how capacity constraints and price dynamics impact electric truck adoption trajectories. Finally, a multi‑system transitions (MST) perspective is combined with qualitative SD in two cases (forestry, port hinterland) to map technology, actor and institutional couplings between freight and electricity systems.
The thesis contributes with (1) a structured, system‑level framing of freight electrification that makes feedbacks and induced effects explicit; (2) calibrated SD models that quantify adoption‑infrastructure co‑evolution, system‑wide efficiency dynamics and transport‑electricity interdependencies; (3) a methodological advancement in applying SD to freight electrification transitions through integration with multi‑layer and multi‑system transition frameworks; (4) guidance on policy timing, mix and stability, including phase‑specific recommendations; and (5) participatory decision‑support tools that help public and private actors test interventions under uncertainty. Together, these contributions equip stakeholders with the system-level understanding needed to make strategic decisions and steer the transition toward a sustainable road freight transport system.