Note: This post has been updated to reflect the modules on Dardel (December 2021).
When we use Python in our work or personal projects, it is often necessary to use a number of packages that are not distributed as standard Python libraries. We therefore need to install those packages based on the specific requirements of every project. In the scenario of working on multiple projects, it is not uncommon that different projects have conflicting requirements in terms of packages. For example, project A may require version 1.0 of a certain package, while project B may require version 2.0 of the same package. A solution to this conflict is to separate the packages for different projects or purposes with the help of a so-called “virtual environment”.
A Python virtual environment is an isolated run-time environment that makes it possible to install and execute Python packages without interfering with the outside world. Without a virtual environment, Python packages are installed either in the system site directory, which can be located via the following command:
$ python -c 'import site; print(site.getsitepackages())'
or in the so-called Python user base, which is usually in the “$HOME/.local
” folder. A Python package installed in this way can have only one version, and it is therefore not possible to work with two or more projects that have conflicting requirements regarding the versions of a certain Python package. With the help of a virtual environment, we can have different Python site directories for different projects and have those site directories isolated from each other and from the system site directory.
This blog post will briefly introduce two ways of creating and managing a Python virtual environment: venv
or conda
.