Master's programme in Aerospace Engineering

The main objective of the master’s programme in Aerospace Engineering is to educate skilled engineers for work in the international aerospace sector. The job market is, however, not at all limited to that specific sector. Graduates from the programme will gain solid theoretical skills in aerospace modelling, analysis and design, as well as a general ability to approach and solve complex engineering tasks and a habit of working in teams. They will also be trained in communication and working within an international environment – skills that translate well to global career opportunities.

Application open

Application through University Admissions in Sweden.

16 October 2017: Application opens
15 January 2018: Application deadline
1 February 2018: Deadline for supporting academic documents (all applicants) and documentation of fee exempt status (if required) or receipt of application fee (if required)
6 April 2018: Notification of selection results

Non-EU/EEA/Swiss citizens: The tuition fee for the full programme is SEK 310,000
Non-EU/EEA/Swiss citizens are generally required to pay an application fee of SEK 900.

EU/EEA/Swiss citizens: There are no tuition fees for EU/EEA/Swiss citizens
EU/EEA/Swiss citizens are not required to pay an application fee.

Read more about tuition and application fees

Degree awarded: Master of Science
Language of instruction: English
Duration: Two years (120 ECTS credits)
Programme start: Late August
Location: KTH Campus, Stockholm
School: School of Engineering Sciences (at KTH)

For questions regarding programme content and specific admission requirements, feel free to contact the programme coordinator.

Programme coordinator: master@sci.kth.se ​​​​​​​​​​​​​​

Aerospace Engineering at KTH

The master’s programme in Aerospace Engineering offers students a broad, challenging and internationally acknowledged education. It provides skills for aerospace modelling and design, for solving complex engineering tasks, for collaboration with others on projects, and for communicating results and findings in a professional manner. The programme at KTH is highly international with contacts and students from all over the world. The programme director, Christer Fuglesang, is an astronaut and a KTH alumnus.

The programme is branched into four tracks: Aeronautics, Space, Lightweight Structures and Systems Engineering, from which the student chooses towards the end of the first term. Each track has a few compulsory courses, but most are optional. A set of recommended courses are also provided, but students chose optional courses based on their own interests and wish to advance. There are also many possibilities to combine courses between the tracks. The first term contains one basic course in each track, which enhances basic skills and offers an introduction to various aspects of aerospace engineering. A course in theory and methodology in science is also included. The specialisation tracks start the second term and all offer different compulsory and recommended elective courses. The final term is spent on a five-month degree project where students get the opportunity to work in depth with a larger problem. The project is performed either in the industry or at a university, in Sweden or abroad. The degree project is presented at a seminar where the conducted work and results are presented and discussed.

Aerospace Engineering

Track - Aeronautics

The aeronautics track focuses on modelling, analysis and design of aircraft. The overall objectives are that students should learn to design and estimate the performance of an aircraft, compute its aerodynamic properties, simulate its motion in flight, and analyse how the aerodynamic and structural properties influence stability and control. The track is characterised by a strong interaction between theory and practice. Students will, for example, plan, perform and evaluate wind tunnel tests during their education.

Track - Space

Space technology plays a key role in modern society, enabling telecommunication and navigation services, weather forecasting, Earth observation and much more. The space track focuses on applications related to rocket and satellite technology, with particular emphasis on propulsion, trajectory analysis, spacecraft dynamics and systems perspective. The space environment and its impact on the design and instrumentation of satellites is another central theme in the education. Wider perspective is offered by courses in human spacecraft, space research, etc. The space track can conveniently be combined with (parts of) the other tracks in the programme to create an attractive competence profile.

Track - Lightweight Structures

The Lightweight Structures track focuses on analysis and development of lightweight materials and structures for more efficient mechanical solutions and products. Functionality per weight is a simple, but repeatedly relevant measure of efficiency since reduced weight can enable improved structural performance, more cost-effective production and reduced environmental impact. The track has a clear emphasis on fibre composites, including non-metallic materials and sandwich structures, since such materials are often used in applications with extreme requirements. Students following the track develop knowledge and skills in analysis, design, optimisation, materials, manufacturing and testing of lightweight structures.

Track - Systems Engineering

Aircraft, trains and satellites are examples of complex systems that have to be designed with reliable control systems and efficient maintenance plans to be competitive in today's global market. The overall objective with the systems track is that you should be able to develop mathematical models of systems in order to analyse and optimise their performance. Control theory has a crucial role in the development of rockets as well as for robustness and performance of modern airplanes.

TOPICS COVERED: Flight mechanics, aerodynamics, aeroelasticity, space physics, spacecraft dynamics, mechanics and manufacturing of composite materials, lightweight design, control theory, numerical optimisation

Courses

Career

The employment market for aerospace engineers in Europe is strong and will likely remain so for the foreseeable future. Airbus is the main European aerospace company, employing about 130,000 people, but a large share of the work is performed at various subcontractors all over Europe and worldwide. Students taking the Aeronautics track are particularly attractive to companies working in aerodynamics and aeronautics.

The space sector is dynamic and evolving, with major projects such as navigation satellite projects and challenging scientific missions. The European space industry employs about 40,000 people. As a space engineer, you can, for example, work with development, testing and the operation of satellites, launchers, sounding rockets or other space systems.

Lightweight design calls for a systems approach to the choice of materials, manufacturing processes and product solutions. Students taking the Lightweight Structures track are thus prepared for a future in the development of new products or applications where more sustainable air transportation likely will be a key societal issue for the coming decades. There is a constant need for skilled structural engineers within aerospace, naval and automotive engineering, as well as in other businesses working with more niched manufacturing or innovative design solutions.

Today, Systems Engineering is increasingly important in areas like the aerospace sector, the automotive industry and communications systems. A systems engineer could work with the design of the control of the damping in an aircraft’s landing gear, how to find the least costly spare parts management system for an air fleet, or in analysing the reliability of a radar system. A systems engineer is attractive to a large number of industries in various fields.

A master’s degree in the aerospace field from KTH is a mark of quality and opens a wide range of career opportunities in industry and research, as well as within areas outside the aerospace sector.

AFTER GRADUATION: After graduation, you can become anything, really, and providing a list here would be limiting rather than illustrative. You will for certain be an engineer and as such you can become a scientist or a CEO, a stress analyst or a project manager, a technical support specialist, a salesperson or an astronaut, all depending on the opportunities and decisions that you make.

Students

Find out what students from the programme think about their time at KTH.

Nishita Vegi, India

"KTH has a wide range of events happening and so many international students coming in each year!"

Meet the students

Faculty and research

The compulsory part of the Aerospace Engineering Programme is entirely taught by senior faculty who are also active as international researchers within their fields. The programme is also broad in the sense that courses are taught by several departments and schools at KTH.

In addition to the education in theory, several research labs are also engaged in the teaching of computations, manufacturing, tests and measurements.

Changes in the programme may occur.

Top page top