MSc Sustainable Energy Engineering
The master's programme in Sustainable Energy Engineering provides advanced education in solar energy, power generation, energy utilisation and transformation of energy systems. Students gain a multidisciplinary foundation in energy engineering and skills to manage complex energy related problems with a lifecycle perspective. Graduates lead the development in the energy sector with skills and insights in industrial challenges, leadership, innovation and entrepreneurship.

Sustainable Energy Engineering at KTH
The master’s programme in Sustainable Energy Engineering equips students with skills and insights in leadership, industrial challenges, innovation and entrepreneurship in the energy field. The programme provides an atmosphere and learning environment that fosters global responsibilities and sustainable development for all. Therefore, the emphasis is placed on dealing with energy engineering tasks with due consideration of technical, environmental and socio-economic issues.
The first term of the programme is an intensive introductory period with broad-based coursework in energy engineering, including conversion technologies, systems and applications. Participants follow a learning-path in advanced level energy engineering courses, where their pre-requisite knowledge in thermodynamics, fluid mechanics, and heat transfer is put to use in challenge-based problem-solving. Advanced methods are applied to identify, describe, quantify and find solutions to a diverse range of energy engineering problems.
For the second term, you choose one out of four profiles for in-depth studies for the rest of the programme:
- Sustainable Power Generation focuses on conversion processes from renewable sources (solar, wind, biomass) to electricity, with co-generation of energy services such as heat, cold and clean water.
- Sustainable Energy Utilization focuses on the demands of the built environment, and the opportunities for innovation in heating, ventilation and air-conditioning. Industrial process heat and cooling are also addressed.
- Solar Energy focuses on the integration of solar energy (electricity/heat/cooling) from small-scale distributed solutions at the building and city level to large-scale power plants. Techno-economic aspects of solar systems, as well as system integration issues, are the main focus of the profile.
- Transformation of Energy Systems – Policy and Management focuses on the knowledge and tools to support policy and regulation. Students following the profile acquire the qualitative and quantitative background for strategic decision-making in a secure and low-carbon energy sector at the local, national and international level.
Courses are offered by faculty staff who are also engaged in research and collaboration with industry. Similarly, many courses employ professionals from industry as guest lecturers on topics related to the practical side of the curriculum. Examples of external partnerships in 2019-2020 are Northvolt, Abengoa, Azelio, SaltX, Torresol, Sweco, Ellevio, Stockholm Exergi, Vattenfall, Energi & Kylanalys, Fortum, World Bank, the International Energy Agency, and Stockholm Environmental Institute.
Teaching methods aim at student-centered learning, hands-on work and challenge-driven education. This means a large content of project-based learning activities. Digitally based learning activities are common, including the concept of flipped classrooms, video lectures, and computerized automatically corrected homework/quizzes/exams.
Degree project
In the last term, a degree project is carried out which spans five months. The project may be carried out either in an academic environment (e.g. closely connected to the Department of Energy Technology research projects) or in an industrial setting. During your degree project, you will establish an excellent platform and gain valuable experience and contacts for the career ahead.
This is a two year programme (120 ECTS credits) given in English. Graduates are awarded the degree of Master of Science. The programme is given mainly at KTH Campus in Stockholm by the School of Industrial Engineering and Management (at KTH).
Students
Find out what students from the programme think about their time at KTH.

Career
The energy field is an international and dynamic area in which well-trained engineers are in constant demand. Graduates find employment in industry, government agencies and consultancies. The master's programme in Sustainable Energy Engineering is also an excellent starting point for a research career, as many graduates go on to doctoral studies.
After the completion of this programme, you will be able to manage technical problems from a systems perspective, with a holistic view of their life cycle, from concept to specification, development, operation and decommissioning. You will also be confident in characterising an energy challenge, determining the necessary resource consumption and managing processes for problem-solving/realisation. Our aim is that you will have a particularly good understanding of the fact that engineering problems are often complex, and sometimes involve conflicting conditions. You will become aware of the responsibilities and ethical standpoints that may arise in connection with various technical, organisational, economic, ecological and societal activities.
Thus, the programme prepares you for immediate engagement in the development and implementation of sustainable energy technology, leadership positions in the field, as well as academic research. The future is bright, and, with properly trained engineers, society will reach sustainability in energy systems. Graduates from the programme can be among else be found in the consulting companies ÅF, SWECO and WSP, in energy utilities such as Vattenfall and EDF, in the building companies NCC and Skanska, and other organisations such as Scania Group, InnoEnergy and Swedish Energy Agency, IRENA, World Bank and the International Energy Agency.
Sustainable development
Graduates from KTH have the knowledge and tools for moving society in a more sustainable direction, as sustainable development is an integral part of all programmes. The three key sustainable development goals addressed by the master's programme in Sustainable Energy Engineering are:



SDG7 (Affordable and Clean Energy) is addressed in many courses in the programme, for example in the courses Renewable energy technology and Sustainable power generation, where technologies and tools for sustainable energy systems are studied. To address SDG9 (Industry, Innovation and Infrastructure), the programme offers courses on Energy system analysis and Energy policies. An example of programme courses that address SDG11 (Sustainable Cities and Communities) is the course on Solar energy for buildings and cities.
Faculty and research
The master’s programme in Sustainable Energy Engineering is closely connected to the KTH Department of Energy Technology (EGI). At EGI, the research covers wide areas of energy conversion, electricity generation and energy utilization as well as energy systems and policies for implementing sustainable energy solutions. As such, the work aims at contributing to welfare and development through world-class research and education in innovative energy technologies and systems, and promotion of the energy sector transition towards sustainability.