Skip to main content

MSc Sustainable Energy Engineering

The master's programme in Sustainable Energy Engineering provides advanced education in solar energy, power generation, energy utilisation and transformation of energy systems. Students gain a multidisciplinary foundation in energy engineering and skills to manage complex energy-related problems with a lifecycle perspective. Graduates lead the development in the energy sector with skills and insights in industrial challenges, leadership, innovation and entrepreneurship.

Application deadlines for studies starting 2023

17 October (2022): Application opens
16 January: Last day to apply
1 February: Submit documents and, if required, pay application fee
30 March: Admission results announced
August: Arrival and study start

Application open

Start your application today for studies starting autumn 2023.

Apply now

Sustainable Energy Engineering at KTH

The master's programme in Sustainable Energy Engineering equips you with skills and insights into leadership, industrial challenges, innovation and entrepreneurship in the energy field. The programme provides an atmosphere and learning environment that fosters global responsibilities and sustainable development. Therefore, the emphasis is placed on dealing with energy engineering tasks with due consideration of technical, environmental and socio-economic issues.

The first semester of the programme is an intensive introductory period with broad-based coursework in energy engineering, including conversion technologies, systems and applications. Participants follow a learning path in advanced-level energy engineering courses, where their pre-requisite knowledge in thermodynamics, fluid mechanics, and heat transfer is put to use in challenge-based problem-solving. Advanced methods are applied to identify, describe, quantify and find solutions to a diverse range of energy engineering problems.

For the second semester, you choose one of three profiles for in-depth studies for the rest of the programme.

Energy Supply through Clean Conversion Technologies

This profile focuses on the energy conversion processes and systems for generating and distributing primarily electrical power, district heating and cooling, and clean water. We cover the evolution of conventional energy systems to integrate a growing share of renewables and the challenges demanding further evaluation and innovation towards broader electrification, energy storage, efficient co-generation, polygeneration, transmission and improved solutions for energy supply-side management.

Energy in Buildings and Cities

Globally and in Europe, residential and commercial buildings are responsible for nearly 40 % of energy use, which is dominantly used for heating and cooling. In the coming years, tens of millions of conventional heating systems in Europe are expected to be replaced with environmentally friendly systems, such as heat pumps and solar-based solutions. The new system solutions are likely to be integrated and more complicated, which requires new engineering knowledge. 

This profile focuses on the energy demands of the built environment and the components and systems for heating, ventilation, air-conditioning, and solar systems. A central part of the profile is studying integrated energy systems, such as solar-geothermal heat pump systems, and analysing their performance on the building level. Possibilities for system coupling on the district and city levels will also be covered. Various building types and application areas will also be covered, including techno-economic and environmental impact analysis.

Energy System Analysis 

This profile focuses on the systems perspective of the sustainable energy transition, where energy technology innovation, planning, and policy are linked to sustainable development. You will learn how to develop quantitative models for analysing energy systems as the basis for strategic investment decisions and policy in the circular economy context. Through qualitative analyses, the impact of policies on the transition to a sustainable society is analysed. Central to this profile is knowledge and skills of importance for contributing to a secure and low-carbon energy sector at the local, national, and international level – and in harmony with the Sustainable Development Goals.

Courses and teaching methods

We offer courses by faculty staff who are also engaged in research and collaboration with the industry. Similarly, many courses employ professionals from the industry as guest lecturers on topics related to the practical side of the curriculum. Examples of external partnerships in 2020-2021 are Northvolt, Abengoa, Azelio, SaltX, Torresol, Sweco, Ellevio, Stockholm Exergi, Vattenfall, Energi & Kylanalys, Fortum, World Bank, the International Energy Agency, and Stockholm Environmental Institute.

KTH is a member of Unite, a network of seven top universities in seven European countries. Unite offers virtual exchange studies in energy technology, which will give students in the programme the opportunity to follow several online courses as a complement to the courses at KTH. These courses will be included in your degree from KTH.

Teaching methods aim at student-centred learning, hands-on work and challenge-driven education. This means a significant content of project-based learning activities. Digitally based learning activities are common, including the concept of flipped classrooms, video lectures, and computerised automatically corrected homework/quizzes/exams.

Degree project

In the last semester, you carry out a degree project for five months. The project is done in an academic environment (for example, closely connected to the Department of Energy Technology research projects) or in an industrial setting. During your degree project, you will establish an excellent platform and gain valuable experience and contacts for the career ahead.

This is a two-year programme (120 ECTS credits) given in English. Graduates are awarded the degree of Master of Science. The programme is given mainly at KTH Campus in Stockholm by KTH’s School of Industrial Engineering and Management.

Topics covered

Renewable energy, sustainable energy utilisation, sustainable power generation, energy policy, energy management, project management, state-of-the-art in sustainable energy technology, modelling of energy systems.

Courses in the programme

Students

Find out what students from the programme think about their time at KTH.

Siddharth from India

"On the academic front, the faculty, well-structured courses, technical events and laboratories bring the best out of the individuals. One’s perspective diversifies while mingling with students from different backgrounds and cultures."

Siddharth from India

Meet the students

Career

The energy field is an international and dynamic area in which well-trained engineers are in constant demand. Graduates find employment in industry, government agencies and consultancies. The master's programme in Sustainable Energy Engineering is also an excellent starting point for a research career, as many graduates go on to doctoral studies.

After completing the programme, you will be able to manage technical problems from a systems perspective, with a holistic view of their life cycle, from concept to specification, development, operation and decommissioning. You will also be confident in characterising an energy challenge, determining the necessary resource consumption and managing processes for problem-solving/realisation. During your studies, you will gain a particularly good understanding of the fact that engineering problems are often complex and sometimes involve conflicting conditions. You will become aware of the responsibilities and ethical standpoints that may arise in connection with various technical, organisational, economic, ecological and societal activities.

Thus, the programme prepares you for immediate engagement in the development and implementation of sustainable energy technology, leadership positions in the field, as well as academic research. The future is bright, and, with properly trained engineers, society will reach sustainability in energy systems. Graduates from the programme can be among else be found in entrepreneurial companies like Northwolt and Phoenix Biopower, in consulting companies like AFRY, SWECO and WSP, in energy utilities such as Vattenfall and EDF, in the building companies NCC and Skanska, and other organisations such as Scania Group, InnoEnergy and Swedish Energy Agency, IRENA, World Bank and the International Energy Agency.

After graduation

As a graduate you may work as energy consultant, project manager, research and development scientist (academic and in industry), and, not least, entrepreneur in the energy sector which is full of opportunities and has a huge room for energy system related innovations

Meet the graduates

Sustainable development

Graduates from KTH have the knowledge and tools for moving society in a more sustainable direction, as sustainable development is an integral part of all programmes. Three key sustainable development goals addressed by the master's programme in Sustainable Energy Engineering are:

Sustainable development goal 7: Affordable and Clean Energy
Sustainable development goal 9. Industry, Innovation and Infrastructure
Sustainable development goal 11. Sustainable Cities and Communities

SDG7 (Affordable and Clean Energy) is addressed in many courses in the programme, for example, in the courses Renewable Energy Technology and Sustainable Power Generation, where technologies and tools for sustainable energy systems are studied. To address SDG9 (Industry, Innovation and Infrastructure), the programme offers courses like Energy System Analysis and Applications and Transformation in Energy Policy and Climate Agenda. Examples of programme courses that address SDG11 (Sustainable Cities and Communities) are Energy Demand and Supply Distribution Systems in the Built Environment and Energy System Economics, Modelling and Indicators for Sustainable Energy Development .

Faculty and research

The master's programme in Sustainable Energy Engineering is closely connected to the KTH Department of Energy Technology (EGI). At EGI, the research covers broad areas of energy conversion, electricity generation and energy utilisation, as well as energy systems and policies for implementing sustainable energy solutions. As such, the work aims to contribute to welfare and development through world-class research and education in innovative energy technologies and systems, and promote the energy sector transition towards sustainability.

Faculty and research

KTH's virtual campus tour

Elisé from Canada is a student at the school of Industrial Engineering and Management (at KTH). In the virtual tour he and some other KTH students will show you around the campuses.

Next step

Apply now!

The current admission round for the programme is for studies starting autumn 2023. Apply before 16 January.

Apply now

Explore KTH

Visit our campuses through an immersive digital tour where our students guide you through their favourit KTH spots.

Ikon med mobiltelefon och brev. Grafisk illustration.

Subscribe

Through our newsletter you will receive important real-time information to make your road to KTH as smooth as possible.

Contact us

Whether you have questions about studies at KTH or student life in Stockholm we will get you the information you need.