Skip to main content
To KTH's start page To KTH's start page

Smaller than a grain of sand—silica glass sensors 3D-printed on optical fiber

Researcher Lee-Lun Lai adjusting laser pointer on 3D printing machine
Lee-Lun Lai demonstrates the setup to print silica glass microstructures on an optical fiber. (Photo: David Callahan)
Published May 15, 2024

In a first for communications, researchers in Sweden 3D printed silica glass micro-optics on the tips of optic fibers—surfaces as small as the cross section of a human hair. The advance could enable faster internet and improved connectivity, as well as innovations like smaller sensors and imaging systems.

Reporting in the journal ACS Nano , researchers at KTH Royal Institute of Technology in Stockholm say integrating silica glass optical devices with optical fibers enables multiple innovations, including more sensitive remote sensors for environment and healthcare.

The printing techniques they report also could prove valuable in production of pharmaceuticals and chemicals. 

Close up of fiber cable set underneath a laser pointer for 3D printing
An optical fiber cable is set up on the 3D printer. (Photo: David Callahan)

KTH Professor Kristinn Gylfason  says the method overcomes longstanding limitations in structuring optical fiber tips with silica glass, which he says often require high-temperature treatments that compromise the integrity of temperature-sensitive fiber coatings.

In contrast to other methods, the process begins with a base material that doesn’t contain carbon. That means high temperatures are not needed to drive out carbon in order to make the glass structure transparent.

The authors have filed a patent application for the technique.

More resilient sensors

The study’s lead author, Lee-Lun Lai , says the researchers printed a silica glass sensor that proved more resilient than a standard plastic-based sensor after multiple measurements.

A microscopic 3D print of the letters, K, T, H, in silica glass on the tip of a cable.
Microscopic image of a printed glass demonstration structure on tip of optical fiber. (Photo: courtesy of: Lee-Lun Lai, et al)

“We demonstrated a glass refractive index sensor integrated onto the fiber tip that allowed us to measure the concentration of organic solvents. This measurement is challenging for polymer-based sensors due to the corrosiveness of the solvents,” Lai says.

“These structures are so small you could fit 1,000 of them on the surface of a grain of sand, which is about the size of sensors being used today,” says the study’s co-author, Po-Han Huang .

The researchers also demonstrated a technique for printing nanogratings, ultra-small patterns etched onto surfaces at the nanometer scale. These are used to manipulate light in precise ways and have potential applications in quantum communication.

Gylfason says the ability to 3D print arbitrary glass structures directly on fiber tip opens new frontiers in photonics. “By bridging the gap between 3D printing and photonics, the implications of this research are far-reaching, with potential applications in microfluidic devices, MEMS accelerometers and fiber-integrated quantum emitters,” he says.

The authors declare the following competing financial interest(s): A patent application (US 17/171,587) covering the methods and the optical applications in this work has been filed, with L.L., P.H., G.S., F.N., and K.B.G. as inventors and applicants.

David Callahan callahan[at]kth[dot]se

Publication

3D Printing of Glass Micro-Optics with Subwavelength Features on Optical Fiber Tips, ACS Nano, DOI: 10.1021/acsnano.3c11030

Page responsible:redaktion@kth.se
Belongs to: About KTH
Last changed: May 15, 2024