Recommended exercises
Here is a plan for lectures, tutorials and seminars 2015-2016 with recommended exercises from Calculus (8:e upplagan) by Adams och Essex (F means lecture, Ö means tutorial and Sem means seminar).
Module 1: Limits and continuity
F1 Ch P. Intro, numbers, functions, polynomials och trigonometry.
F2 Ch 1.1-1.3 + 1.5. Limits
Ö1 Exercises: P1: 7, 11, 19, 29, 39. P2: 13,15,17,23. P3: 3, 7, 43, 49. P4: 1, 3, 7, 11, 31, 33, 53. P5: 9, 25. P6: 1, 7, 17. P7: 1, 3, 7, 19, 25, 26, 51. 1.2: 9, 13, 21, 25, 30, 49, 50, 78, 79. 1.3: 3, 6, 11, 13, 53. 1.5: 13, 29.
F3 Ch 1.4. Continuity.
Ö2 Exercises: 1.4: 7, 8, 12, 15, 17, 20, 21, 29.
Sem1 CH P and Ch 1. Hand-in.
Module 2: Differentiation
F4 CH 2.1-2.5. Definition of the derivative, differentiation rules
F5 Ch 2.6-2.8. Mean value theorem etc
Ö3 Exercises: 2.1: 5, 7. 2.2: 1, 3, 11, 26, 27, 40, 41, 42, 43, 44, 45, 47. 2.3: 1, 7, 11, 17, 25, 33, 35, 47. 2.4: 3, 5, 11, 18, 23, 30, 31, 37. 2.5: 13, 15, 23, 29, 31, 35, 45, 62. 2.6: 3, 9. 2.7: 1, 3, 11, 13, 23, 29. 2.8: 5, 13, 21, 27.
F6 Ch 2.9-2.11. Implicit differentiation etc
Ö4 Exercises: 2.9: 3, 9, 13. 2.11: 5, 7, 13, 16, 17, 18, 19.
Sem2 Ch 2. Written test
Module 3: Transcendental functions and ODE
F7 Ch 3.1-3.6. Transcendental functions.
F8 Ch 3.7. ODE intro. Homogeneous
Ö5 Exercises: 3.1: 3, 9, 23. 3.2: 3, 5, 9, 15, 25, 29. 3.3: 3, 5, 7, 9, 19, 21, 31, 33, 43, 51, 59. 3.4: 1, 3, 5, 9, 11, 17, 23, 25. 3.5: 1, 3, 5, 7, 13, 19, 21, 23, 35. 3.7: 1, 3, 5, 7, 9, 13, 15, 21, 25, 29.
F9 Ch 18.6. ODE cont. Inhomogeneous.
Ö6 Exercises: 18.6: 1, 3, 5, 7
Sem3 Ch 3. Hand-in.
Module 4: Applications of the derivative
F10 Ch 4.1-4.5. Applications. Max / min etc
F11 Ch 4.6-4.8. Appl. cont. Curve sketching etc
Ö7 Exercises: 4.1: 5, 7, 9, 16, 17. 4.2: 7, 9. 4.3: 1, 5, 17. 4.4: 3, 14, 29, 35. 4.5: 5, 11, 27, 31. 4.6: 3, 5, 9, 17, 31, 35. 4.8: 1, 7, 13, 21, 25, 31.
F12 Ch 4.9-4.10. Taylor's formula.
Ö8 Exercises: 4.9: 1, 3, 13, 25, 30. 4.10: 1, 5, 9, 12, 13, 15, 16, 23, 31.
Sem4 Ch 4. Written test
Module 5: Integrals
F13 Ch 5.1-5.5. Integrals, definition, fundamental theorem
F14 Ch 5.6-5.7. Substitution
Ö9 Exercises: 5.1: 1, 3, 7, 9, 17, 33. 5.2: 1, 3. 5.3: 1, 5, 9, 11, 17. 5.4: 1, 3, 23. 5.5: 3, 8, 27, 33, 39, 40, 41. 5.6: 5, 6, 7, 9, 21, 23, 43. 5.7: 11, 17.
F15 Ch 6.1-6.2. Techniques of integration
Ö10 Exercises: 6.1: 1, 3, 5, 7, 13, 21. 6.2: 1, 5, 9, 11, 13, 23.
Sem5 Ch 5 and 6.1-6.2. Hand-in
Module 6: Applications of integration
F16 Ch 6.3-6.8, only certain sections. Improper integrals
F17 Ch 7.1-7.2. Applications
Ö11 Exercises: 6.3: 1, 3, 9. 6.5: 1, 3, 5, 15, 23, 33, 34, 35. 7.1: 1, 3, 5, 13, 19, 21. 7.2: 1, 3.
F18 Ch 7.3-7.7, only certain sections. Applications
Ö12 Exercises 7.3: 3, 11, 21. 7.4: 1, 3, 5. 7.6: 1, 7. 7.7: 1, 5.
Sem6 Ch 6 and 7.1-7.2. Written test
Module 7: Curves, Sequences, Series
F19. Ch 8. Plane curves (not in detail). Ch 9. Sequences and series.
F20. Ch 9. Sequences and series.
Ö13. 8.1: 1, 3, 5. 8.2: 1, 7. 8.5: 9, 13. 9.1: 1, 3, 17. 9.2: 1, 5. 9.3: 1, 3, 27, 29, 35.
F21. Repetition.
Ö14. Repetition. Old exam problems